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1. INTRODUCTION

The stochastic filtering theory has been a great source of motivation for

research in the field of stochastic processes and there is abundant literature

on the subject, (cf. e.g. [7]. [8], [10], [12]. [16]. [23]. [24] and references

contained therein). One of the main motivation of research has been the

solution of the filtering equation. Since in the linear case the filtering

equation has an explicit solution, the early attempts of approximate

computations in the nonlinear case were based on the linearization techniques

which gave rise to what is called the extended Kalman-Bucy filter; (cf. [8]).

The corresponding approximations only aimed at the computation of the

conditional expectation of the state variable at a certain instant in terms of

the observations up to a certain time. The computations for the extended

Kalman-Bucy filters are easy (particularly in the discrete-time case), but one

inconvenience of the method lies in that the accuracy of the approximation can

not be evaluated. The reference probability method ([1], (22]. [25]) allowing

the derivation of the Zakai equation, has opened a new way to considering the

filtering problem. Although there is no method for actually solving the Zakai

equation much has been added to the qualitative study of the filtering process.

On the other hand, the reference probability method has been very useful in

developing approximation procedures ([3]. [11], [13], [19]. [20]) some of which

are exposed here.

After a short introduction to stochastic filtering, we present the

approximation procedures based on the periodic sampling of both the observation

and the signal. Approximate filters obtained there correspond to the discrete

time filtering of Markov chains with values in some 0q-space and are expressed

in terms of integrals depending on a continuous parameter, which render the

numerical computation difficult. In order to eliminate this difficulty and to
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help computations we propose a quantization of the signal and the observation

processes. The proposed approximation schemes follow those of [11] and go as

follows in the decreasing order of difficulty for computations, i) Periodic

sampling of the observation. ii) periodic sampling of the signal, iii) Euler

approximation of the signal, iv) quantization of the signal,

v) quantization of the observation. For each step the expression of the

approximate filter is given and the corresponding approximation degree is

estimated.

The estimation of the approximation degrees was considered in [3], [11],

[19] and [20]. but always with the boundedness condition on the modulated

signal h or some restrictive conditions on the likelihood ratio excluding the

linear model from the approximation procedures. The method proposed there does

not necessitate such conditions; it only requires, as in the aforementioned

references, Lipschitz and linear growth conditions that are necessary for

benefiting from the continuity of the signal process and of its various

approximations.

In order to make our approach as general as possible we choose a model in

which the modulated signal and the drift and diffusion coefficients are time

dependent.

The approximation degrees obtained here are of the order of /6. as in [3]

and [11]. where 6 is the sampling period but, because of the widening of the

conditions, the bounds are better. In [19] and [20], approximation degrees of

the order of 6 were obtained under more regularity conditions on the system and

in a slightly different frame.

Section 2 is a short presentation of the reference probability method

without derivation of the Zakai equation, since we only approximate the

Kallianpur-Striebel formula.

Section 3 presents the first three approximation schemes and the

corresponding recursive equations for the filters.

40
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Section 4 presents the method of estimation of approximation degrees and

gives the bounds for the first and second approximations.

Section 5 considers approximations of the signal by sampling and

quantizat ion.

Section 6 derives the approximation bounds for filters corresponding to

various approximations of the signal and presents a method of quantization of

the observation process preserving the degree of the previous approximations.

2. MODEL AND FILTER

Throughout this work the follow4ng usual signal and observation model is

considered.

The signal process is a q-dimensional continuous Markov diffusion defined

by the stochastic differential equation
t t

(2.1) xt = X0 + J; f(s'xs)ds + J g(s.xs)dbs

where b. called the state noise, is an r-dimensional Brownian motion.

independent of x0, and f and g are functions, sufficiently regular in order to

guarantee the existence and uniqueness of the solution, [4]. [6]. The

observation process is a p-dimensional process given by

(2.2) Yt =f h(s.xs)ds + wt

where w. called the observation noise, is a p-dimensional Brownian motion and

h. called the modulated signal, is supposed to satisfy the condition:

(2.3) ET; lh(s.x S) lds <

for all t < co. condition under which the filtering equation was derived in [5]. ",

In the general setting of the nonlinear filtering theory [5]. b and w are

correlated in such a way that (b.w) is a square integrable martingale. For

structural reasons that will appear in the sequel, approximation schemes usiag

the reference probability method, as in this work, are all proposed for r

independent state and observation noises. We are thus supposing that b and w

are independent.

ALPN
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We denote by 1-1 the norm in Be. by vI the ith component of a vector v and

by mt j the entry (ij) of a matrix m. 1mil* stands for the norm of the vector

i- (m; J=1.2....). We also write Im12 = I 2(miJ)2 . We simply denote by
ii

uv the scalar product of two elements u.v a op.

Since a filter is progressively computed in time, we may suppose that the

time parameter of all the processes under consideration ranges over the finite

interval [OT].

Let G represent any one of the functions f and g. Then G is supposed to

satisfy the following Lipschitz and linear growth conditions.

(2.4) { I::t.x- '; ')l K0 It-t'll+IxI+lx'I) + Ix-x'I)

IC(t'x)j Ko0(l+jxj) apstv

for all t.t' a [0.T] and x,x' a Iq, where K0 is a positive number not depending

on t,t.,x.x.

x0 Is supposed to be a square integrable random variable, independent of b

and w.

r
Let B (resp. Y) denote the space of all IR (resp. FP)-valued continuous

functions on [0,T] and denote by BT (resp. YT) its Borel a-field under the

sup-norm topology. Iq denotes the Borel a-field of q, and (q). the space of

all bounded Borel functions on Rq.

P is the probability measure on Iq x BIT x YT 
= : FT induced by (xoby).

We suppose that all the probability spaces are complete. We put n = Iq x B x

Y. Therefore. (fl.FTP) is the probability space on which all the random

processes under consideration are defined. We denote by Ft (resp. Yt) the

sub-c-fields generated by {(x0 bs.ys); s t} (resp. {ys; s t}.

According to the Girsanov theorem [14]. there is a probability measure P0

on FT , equivalent to P. under which y is a Brownian motion independent of

(xo,b) whose probability distribution, denoted by Q, remains unchanged. The

corresponding Radon-Nikodym derivative is given by

O r
% 00P.
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dP TITIC1
(2.5) dpO = exp[-fT Csdys - 1 iC I 2ds], with Cs = h(S.Xs).

The probability law of y under PO is denoted by PyO E(resp. EO EQ . Z )

represents the expectation under P (resp. PO.Q. PO).

We put

(2.6) z t = exp[ f Csd s - 1t ICs I2ds].

The process Z = {Zt; t e [0,T]) is a martingale with respect to F = {Ft
tp

t . [O,T]} and PO, and
dPt

Z= Eo(ZrIFt) = dP .t ~ dP 0~

where Pt (resp. Po~t) stands for the restriction to Ft of P (resp. PO).

If U is an F -measurable integrable random variable, then

Eo(Zt UIYt) Q
(2.7) E(Uy Eo(ZiY) and Eo(U Y) = E (U)

The second formula is a consequence of the independence of b and w.

A finite conditional measure at can be defined on 0. such that, for all F
RI q)

(2.8) at(F) = E [Z tF(x = Eo[ZtF(xt)lYt].

The measure-valued process a is called the unnormalized filter (or filtering

process) whereas the process w defined by the Kallianpur-Striebel formula [9]:

(2.9) Trt (F) = at(F)/at(1)

is called the (normalized) filter or filtering process.

For a detailed presentation of the reference probability method we refer

to [1] and [22]. We Just mention here the fact that an application of the Ito

differentiation rule to (2.8) to (2.9) successively leads to the Zakai equation

[25) and to the nonlinear filtering equation, obtained in [5] by an application "

of the martingale representation theorem. In this paper we do not deal with

these equations. The approximations we consider here concern formulas (2.8)

and (2.9).

1.2 -Z _%
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3. APPROXIMATIONS BY PERIODIC SAMPLING

3.1 FIRST APPROXIMATION

We suppose that the observation process y is sampled with a constant

period of length 6 and y is known by its samples y0 = 0. Y6'..Yn6.... with n

[T/6]. ((a/b] denotes the integer part of a/b). For a function F on [O.T] we k

write F = F(nb) - F((n-l)6) with = F 0. We put N = [T/6] andy= {yn;

n=O.1.....N). Under PO' {yn ; i=l.....p; n = 1.....N} is a set of

independent Gaussian random variables with means 0 and variances 5. We denote

by _ the sub-a-field of Yt generated by {yn6; n [t/6]}. The filtering

process w with respect to the sampled observation (yn6 n=O ..... N} is given by

6
(3.1) 7t(F) = E[F(xt)JYX]. for F a e(Rq).

As in (1.9) we have

(3.2) V 6(F) = at(F)l/&(1). for F a P(kq )

where

(3.3) a (F) = EO[ZtF(xt)fY J = E*0tFII16 %
where a is the unnormalized filtering process corresponding to the sampled

observation.

For F e P(Ikq) we have
=6

(3.4)a (F) =EQLF(x )Z61

where t
(t/5] 5 52 0

(3.5) Zt = exp Ct HnYn - IHn2)

with
(3.6) H n = 6 1(n-l)6 h(S'Xs)dS' H6= 0.

For a quick proof of these formulas, derived in [11]. it is enough to

6 5
notice that Zt is the ratio of the probability densities of (yn; n [t/6])

under P and PO' given x.

A recursive computation of 6 can be derived from (3.4) as shown in the

following

ju. .4 .
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THEOREM 3.1

Let us put

(3.7) z =ex(H y6 6 6 lH6 12)

and define the conditional kernel L n5(X(n-1)6'-) on by

(3.8) Ln6(X(n-1)6' F) = .f F(u)L n(x(n-1)6, du)

EQ[ZnF(Xn)IXn ]
n6o~nbu (n-i )6

for all F & 3(). Then a56; n = 1,...,N satisfies the following recurrence

equation:

(3.9) a 6 ( f L (ua

= (_)6[L6(-.,F)]

for all F a i); i.e.

a 6 (dx) =a

6where a0 coincides with the law of xO .
6

For (n-1)6 < t < n5, at is given by

(3.10) at(F) = J'qP(n_)5( t ( n-i )5(du)
t Rq1)P(_1)6 't t(-F)6(

for all F e P(q), where P5 r' s < t. is the conditional probability kernel of

xt given xs . This formula can also be written as

a 6 (dx) = a 6 [Pnl "dx)]
t (n-l)61 (n 1)6,t-dx-

Proof: For t = n6, formula (3.4) gives

a56 (F) = E[Z n-) z 6 F(xn)]

= ( -) EQ[znF(xn)Ix
= (n-1)6 n6S n6 l(n-1)61

. Q 6
5=Z

This is formula (3.9). For (n-1)5 < t < n6, Zt 6 n-) Then (3.10) is

t (n-1)6' hn(31)i

obtained by v

V..p

,-',

'"""-" " %"-" ° " " " " " "" ." " " " " " " ' "' '" ''""'' '" ''',,'" """- ' ' " -v - , .. "I

' u u M ''J ~ ilh k~iii : . . i" " ""-- ' " I -"I' d ' ,
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a (F) = EQ[Z' 16 F(x= (n-1)6 Ft)

EQ:,(Z6n EQ[F(x Ix 0
= (n-1)6 0 (n-1)1)0

Formula (3.9) allows the recursive determination of a6 at the sampling-

points and formula (3.10) gives it at any other point. The greatest difficulty 4

in the computation of artS n=l.....N, by (3.9), lies in the fact that the

computation of the kernel Ln5 necessitates the complete knowledge of the

probability law of x. This is very unrealistic, because there are few

nonlinear diffusion processes whose laws can be handled. We therefore simplify

the work by reducing the problem to the knowledge of the transition

probabilities of x.

3.2 SECOND APPROXIMATION 9

% ,

We approximate H by

n (n-1) (n-l)

Then z depends only on x Let us denote it by zn5 . The kernel Ln&

becomes .

(3.12) ZnO(x(n-l). F) = z 6 P(n-1)6.n6x(n-I )6,F)

for F e j(Iq). We denote by a the unnormalized filter given by formulas (3.9)

and (3.10). after Ln6 is replaced by Ln85 and by v the corresponding

normalized filter. 'V

3.3 THIRD APPROXIMATION '.

Except for trivial cases the computation of the transition probabilities

Ps of a diffusion process is not an easy task and needs approximation

procedures. One of the elementary approximation procedures lies in the Euler

approximation of x defined by

(3.13) XnS = X(n 1 )5 + f[(n-1)6.X(nl) 6 + g((n-) l)6 ]b

with x0 = xO. The estimation of the approximation degree will be given in

Section 5.

% % %*
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It is seen that {x5  n--O.....N} is a Markov chain and its transition

probabilities can be formulated in terms of the distributions of bn6;

n=1.2.....N.

We approximate x by

N^.
(3.14) xt =n_1oXn6l[n6. (n+l)5[ (t).

We then replace x by x in formulas (3.4) to (3.9) and obtain by (3.9) the
"6 ~6 '6

corresponding unnormalized filter an6 n 1--O,....N. We put a t  a n6 for n6 < t
-6 6 '< (n+l)6. a is an approximation of a. We denote by w the normalization of

^6
a.

In Section 5 we shall consider another approximation where Xn6 will be

replaced by a finite space valued random variable. Before going further into

the approximation procedures, we are going to develop, in the next Section. the

general method of estimation of approximation degrees and apply it to the first

and second approximations which have their own theoretical interest.

4. ESTIMATION OF APPROXIMATION DEGREES.

Suppose r represents any approximation of ir corresponding to a periodic

sampling of y with period 6. We are interested in the asymptotic behavior of

V(F), for F e P(Iq); more precisely, in proving the Lconvergence of VCF) to

r(F) and estimating the speed of convergence as 6 -* 0.

The LP-norm under P (resp. PO) is denoted by 11'ilp (resp. 11-110 ,p). For

an Rn-valued random variable U, the norm 1IU11 is defined by I UJ JP =

InE{ (Ui )2)p/2}.p
i=l S

In all the approximation schemes considered here, Cs = h(s.xs). s(t, is

approximated by a left continuous step process which is constant on sampling

intervals. We denote by 8t's the process coinciding with this approximating

step process on [o.[t/6]6] and vanishing outside of this interval. We put

Sfor t<6. Notice that t s for s £ [t/l6]6. The corresponding
= 0t t's
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likelihood ratio formula can then be written as follows:

(4.1) 2= exp( 0 tsdys - -1 t .s2 s).

For the first (resp. second) approximation, we have

6
(4.2) = Hn (resp. H) for (n-1)6 < s n6 t.

t~s n n

and put

(4.3) C6(5 epc 5 (resp. s), ::&t
St's t, s" s'

In some other approximation schemes, as in the third approximation, x is

0
replaced by another process x approximating it. Particular notations

corresponding to these schemes will be introduced when we shall be considering

them.

In the case where the likelihood ratio Z is approximated by 2. the filters

a and r are approximated by O and Or. respectively, defined by
0 0

(4.4) at(F ) = E2 [F.txt
)] and ort(F) = ot(F)/Ot(1)

for F e f(q).

At the first step we are going to derive a bound for lir(F) - °(F)IIl

under the hypothesis that

(Ct; t e [OT]} and { Tt ta[O,T]} belong to

(4.5)

L2([O.T] x fl, T S FT. dt x dP)

where T is the Borel a-field of [OT].

For this purpose the following Girsanov theorem constitutes a useful tool.

We write it as a lemma.

LEMMA 4.1

Under the probability P. defined by d = dP0, the process

(4.6) wt = Yt - k' ,ds

is a Brownian motion independent of (xob) and the law of (Xob) is always Q.0

The mathematical expectation under is denoted by . We choose F 6 p(pq)

once and for all and write
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tQ( t F'.d

=Q( t L[rtF) - (F)] -CE(ZZ -~ QE(

tQ[ tt F(Q]

Therefore.

(4.7) 1ilr t(F) - TO t(F)IIi 11%t(F) - ~t(F)I 0.1 + J~~()QZt2)J.

We rema~rk that Oris a regular conditional probability measure and that

IV0(F)I IIFII, for almost all trajectories of y. where IIFII denotes the

sup-norm of F. Thus

(4.8) J0FE(Z -2' 101 JF1J~-tJ.

On the other hand, we can write -

(4.9) 1Icat(F) - 0 t (F)II0i 1

IQ( C2tFxt ]I. + IIEQ[2t(F(xt) - xt)]JI

II(Z~ - 2 )F(x )110,1 + 1I2tEF(xt) -F(xt))Io 1

IFII lifz-2 tIIo,1 + 9IF(x t) F(Xt)I

IIFH1 IZ - 110.1 + IIF(xt) -F(X'ot)Ilila

where we used the statement of Lemma 4.1.

From inequalities (4.7). (4.8) and (4.9) we finally deduce the following

(4.10) Ily (F) - or (F)IIx 21IF1j IZ2 11o.1 + IIF(xt)-F(xt)Ill

Next, we derive a bound for f(Zt- tIfo.

By using the inequality le x eyI Ixy~xe) Vx.y a M.

we can write

(4.11) jZ -Zj 1 (z +zt)IU I =Z JU I + 2jU 1
where

We have, by (2.2) -

(4.13) E O(Zt J jt 1) = =(U i

E( ( - d E(~ I tC_ 2d

+ 2dICs)1I1sI
(ftEIC -8 t~s"' EIC - 1 [ds

0 t's s t's

% %,

P6S
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According to Lemm 2.1 we can write

I t I C12_ 1 2 t
(4.14) EO[-tUtI] £ Eo(-tl J(Cs-t.s)dysI) + jfoEI I I ds

For the evaluation of the first term of the right hand side, we remark

that, for fixed x and x. t is measurable with respect to Y We can therefore

write

(4.15) Eo(1t IJ(Cs-t, s)dys I) =
6EO[ZEY(IJ6(C5 c 5)dysIIlY)] '

E 2[Y(f( ~)dys 12Iy6)])"12 1

For fixed x and x. the stochastic integral of this formula is a centered

Gaussian random variable and we need to calculate its conditional second moment

with respect to a a-field generated by a finite number of centered Gaussian

random variables. Therefore the conditional expectation of the stochastic

integral term is equal to its projection onto the Gaussian space generated by

6 6
Y.....Yn6 with n=[t/6]. It is easily seen that

y t iY~6} t 6 _ tsd s .'
Eo{[fo(Cs s)dYs = (Ct, - "

Since (always for fixed x and x)
t t 6 t 6 -.

f'(Cs-, s)dy-J'oC, - s)dys = fo(Cs - Cts)dys

is independent of Y t we see that the conditional variance of .f;(C s - Cts)dYs

is Cs - ds. Consequently, we have
y t d 2 6

(4.16) EY(I'o(C - 8s) I IY
0 0 S t) 2 t -2

=EfJ(Ct 5 - s)dys] + ftjCs -C C l ds.

By using again Lemma 4.1. from (4.15) and (4.16) we derive:

(4.17) Eo(2.t(Cs-8 )dY 1)
St 0s t s

~IfO(C6 s - ,s)dysI + E(JC - C6  I ds)
f ts t' s s t.s

By Len 4.1 again, we have

,,.1

%".% .".".'% ." - -- " - r - .. .

'r d ' I
% % -
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(4.18) IXO(Ct t )dysI

t (C U )Lt dsl + oC s)dws Io(t's .s .'s I(t.s -~ st

t( s dsl + [StECs- Lt.1ds]I 2  ".
f; v(t's't.s) t's"tJ't:

According to (4.16). (4.17) and (4.18), inequality (4.14) gives:

(4.19) EO[@2t Ivt I]

Elf~(Ct~s ts) t.sSI + (foEICt s_ t s5I2ds)112 +t 6 2 1/2d)12
E(oICs - CtI'ds) +S5 EJJlCs 1 - ICt.s5tds

Inequalities (4.13) and (4.19) provide a bound for (4.11).

Let us denote by 1-1t the norm in L2([O.t] x P2) where the measure is

dtxdP. Then we can express the main tool which will allow the evaluation of

the approximation degrees for filters.

MAIN LEMMA 4.2

Under Hypothesis (4.5). the following inequality holds.

(4.20) zt - tl1o. 1

CC C81( I + +~ '8'1 +

+ Ct - 8tmt(1 + 18tit.o.:,

Now, we are able to express, in terms of 6. a bound for (4.10). under the .1

following hypothesis.

jh(t.x) - h(t',x')i Ko[lt-t' I(l+lxl+Ix' l)+Ix-x' l
(4.21) -.

Ih(tx)l o(l + lxl).

where K0 is a positive number not depending on t. t' x and x'. We could

choose K0 different from the one used in (2.4) for f and g. But this would

render the notations more complicated.

We first recall the following classical result, (cf. Section 5).

There exist positive constants K1 and K2 such that

(4.22) II1xtll2  K1  and Ilxt-xs112 K2It-sl1/2 .

These inequalities are only consequences of the square integrability of x0
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and of conditions (2.4) for f and g.

In this section we only consider the two cases of the first and second

approximations. In these two cases x = x. Inequalities (4.21) and (4.22)S

guarantee that Hypothesis (4.5) is fulfilled. Therefore, we can apply Lemma

4.2.

a 6
For O = r . (4.10) and (4.20) give

(4.23) I Iwt(F) - w (F)II1

4 2F I I C-Cjlt (2 + 14CC.t+ g +
By putting t'=[t/6]5, we can write

EIC5 - Ct 12ds :s. 12 t.s  6
ft EIC s

2ds + ; EICs-C .I2ds

S sup IICsI112 + t, sup IICsC6 112.

S s2 s~t

(4.21) and (4.22) give, for (n-1)6 ( s 9 n6 t,

(4.24) I ICs-C ,I 2 6 Ilh(s.xs) - I.J'(n- 11h(u.x )duII2 =

-1 jn ([h(Sxs)-h(u )]du /

6 5 (n-1)6 s u)1u1

< Ko~'~n~_ )6E[Iu-s(l+IxuI+lxs) + IxuXsl] 2du}11 2

K 1O [6(1+2K,) + K 2vF6.

As liC 112 KO(l+KI). we can write

(4.25) IC-C1. K KO(I+K1 + -/ [K2 + (1+2K1 )-]V6 =: A1 46.

We also have IC.l2 K0 (l+K1 ). Therefore, we can formulate the

following result.

THEOREM 4.3

Under hypotheses (2.4). (4.21) and x0 a L 
2 ((.FT.P) we have

(4.26) llt(F) - w,(F) I I I 21IFfI IA ,/"

where

(4.27) A = A[2+-1v + VT KO(l+KI)]

with A1 defined by (4.25). 0
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REMARK 4.4

Inequality (4.26) holds also for v corresponding to the second

approximation. The only difference in the proof is the fact that in (4.24) x

is to be replaced by x(n-l)6.

REMARK 4.5.

The equality Yt = V Y6 implies that, for F a 3(g q ) . 6 (F)=EEF(xt)IY6t]

converges to I(F)=E[F(xt)IYt] in all L m , m 1. [17]. The convergence is even

a.s. if the sets of sample points (0.6....NS) form an increasing sequence as

6-+0.

5. APPROXIMATIONS OF THE SIGNAL PROCESS

After a study of the Euler approximation in L k . we give a quantization

scheme preserving the degree of approximation. First of all we are going to

give an estimation of the constants Kl(k) and K2 (k) such that inqualities

(5.1) lixt1lk Kl(k) and Ixt-Xsl'k K2 (k) It-sI1/2

hold when x0 e L
k . For k=2. we put KI(2)=K1 and K2 (2)=K2 .

In current literature ([4]. [6]. [14]) these constants are determined for

even k by using the Ito calculus. But one may need to consider the above

inequalities for arbitrary k 2. We give here a rapid estimation of K1 and K2

by using the Burkholder-Davis-Gundy inequality, [2]. ".

Suppose x a Lk k 2. and let N be a positive number and define

T=inf{t; J N). Since x is continuous, and IxoI<- a.s.. TOO for sufficiently

large N and T-.T a.s. as N -o w. We put t_,r = min(tT). In order to simplify

the notations we write 11-11 instead of '

We have

(5.2) x t =X 0 + f;l[oT] (s)f(s.xs)ds + I l[O.T (s)g(s.xs)db" '

I 1 1 1
Ilxt^,.I IlXJj+ q 2  k [ t E(loi(s) fi( )Ik)dsjk +

i=I~fO'WV' u ~ t
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2i kqt kr) k

where g represents the vector (gll g ir

For k=2. the coefficient 4k can be replaced by 1. By using (2.4) we can

write

1 1 1 1

IIxt^T 11 IIxoII + Ko(qt)2 (t 2+4k)t k[oE(l+IXsT)kd]k

Therefore

k 1
I lkXt^T k 2 k-I IXo 1k + 2k-1 +Kk(qt) 2 (t 2 + 4

k ) k t-If 2k-l(+s I Ik)ds

k I

K 2 k-111 ,x0 11 k + 2 2k-2 Kk-(qT) 2 (T2 + 4kk+
k 1

+2 2k-2 Kk qT)2 T + 4kkT1 IIx Il s

Then the Gronwall lemma gives

I xT Ik k A e B

where
(5.3) =k x:

A = + B

k 1
B = 22 k - 2 Kko(qT) 2 (T2 +4k)k

Since the right hand side of the last inequality does not depend on N. we can

let N go to infinity and obtain

1 4

(5.4) I lxtll k K AF exp(B/k) =: K1(k)

K2 (k) can be obtained in terms of Kl(k). starting from .

s q- (ts) 11 1Ilxt-xsll q E. s ut~~

[q(tS)] I f E(I (U.X u)

i=l u

with t>s, and by using the second 'nequality (2.4) for f and g and (5.4).

For various approximations of x we refer to [15], (18] and [21]. We just

derive here a few inequalities concerning the Euler approximation x. defined by

,,* "
*, .), , ,' %PjW' . uJI' : ,,.S-,. I.-. .-. *- . , -
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(3.13) and (3.14). We first determine a bound for lixtilk. under the

hypothesis that x0 e Lk. k > 2.

Let us define f and g as follows S

(5.5) f(t.xt) = f(n5,xn6). g(t.xt) = g(n6. xn6) , for n5 t < (n+1)6.

Then we can write
(5.6) - + f^ f(s0 x )(sSX )ds + o Cg(s.xs)dbs

and use the method that allowed the passage from (5.1) to (5.4) to find that

also is bounded by Kl(k) given in (5.4).

The sam method can be applied for an estimation of IIx-n6- n5I1x. We have

for t = n6

. . .. n-1

Ilxt-xt 11 Ko(qT) 2 ( + + 4k)T k 6 f i+)SE(s_.i)(l+lx s+xI61) +

+ Ix- + x -x16 kds}k

and

I I

lixt-xt Ik [Ko(qT) 2 (T2 + 4)] k T-1 2k- {T[6(1+2KI(k)) + K2(k) ]k

n-I

i=o
By putting us = I 1xi 16xi~iik for 15 0 s < (t+1)6. the sum in the above

t

inequality, multiplied by 5 can be written as f'usds. Therefore. the Gronwall

lemma can be applied and gives the following inequality.

Ilx xn ( exp B) 46. where

(5.7) A= (kB)1 [(+2K,(k)) N6 + K2 (k).
11 1 ,"-"

B = j(2 k (qT)2 (T2 + 4 k)]k

Finally, for arbitrary t e ]n6, (n+1)6[, we can write

(5.8) IIx t - xtI1k g (A exp B + K2(k)J 4/6

We define

(5.9) K(k) :A A exp B.

_ ' %d,%w -. 4 P, , 9V ,~ - ,o .. , *,-... .
- - *C % .•% - |% # ~ ~ .- ni *-'a
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Next, we proceed to the quantization of x.

We fix k once and for all and suppose that x0 has a continuous

distribution function with finite kth absolute moment.

In order to simplify the notation we write Equation (3.13) as follows:

(5.10) Xn = Xn-1 + f(n-liXn_l) + g(n-l, Xn-1 ) ,/6 bn, n=O,l .... N
Im

where {b , n=O,l.....N. i=1. q} is a set of independent normalized Gaussian
n

random variables and Xn , f(n-l.Xnl), g(n-l.Xn-1 ) stand for Xnb. f((n-l)6.

X(n-1)6 ) , g((n-l)6. X(nl)5) , respectively.

We choose a finite increasing sequence uoU 0 .. . .u I in R and real

I-1
coefficients ao.a. .... a_ 1 in such a way that if B = I a.1l and if x

i=0 3ui.ui+1 3

is a r.aal random variable with distribution N(O.1), we have IIx-B(x)I k .

We put P = B(bl) and a = sup JakI. We approximate x0 by a finite space valuedn n k

random variable x in order to have -tx-xol 'k ' and denote a0 = sup I (w)I.

We approximate (X ) by a finite space valued Markov chain (Xn) defined by
n n

(5.11) = Xn _ + f(n- . Xn )S + g(n-1. Xn 1) b n16 b

The components of Xn take a finite number of values in an interval [-a.a]. The N.e

number a will be determined in the sequel. Functions f (n.-) and g (n.) are

-1 -i.approximated by step functions f (n.) and g-(n,) on C-a,aJ. such that 0

sup Ifi(n,x)- P(n,x)l ,) and sup i (nx) - g (nx)I n.
I .n,x i,j,nx .

(the components of x are restricted to [-a. a]). The values of 5. /6 XO , n,

P?, J are chosen in a finite periodic subset of [-a.a].
,.4.

By taking the difference of the two equations (5.10) and (5.11) we can

write

IXn- i  liXn -111 + 'If(n-.X - f(n-l. X -l)116 +

+ Ilf(n-l. X)n_l) f(n-l. X n_l)H6 + IIg(n-l. Xnl )(b n-b )Ib/ 5

n-l• • , - i n-i.. .. . . ..n
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+ I I[g(n-l, Xn-) -g(n-l.X 1))]b<I n ' +

+ IX g(n-1.X

I lXn-1 - X--l II + K01IX n-1 - X nI- 6 + -./'76 +

+ vqr K,(l+Kl(k))-Y/ + q-rKOI IXn_ 1 - Xn-1 1 1 (M(k)+i)-) +

where M(k) is the Lk-norm of a random variable with distribution N(O.I) and we

denoted 11-11k simply by 11'11 and used the inequality JIbnIlk j Ibnhlk +

I Ibnb n ~ 'Ik•'

We can write

fix n - Xnll ullXn- l - X n-11l + v

where
(5.12){Ix xIIuI x)u = I + K06 + v/qrKo(M(k) + -)N/6

v = V/q A/ [rrf/6 + rKo(l + Kl(k))-r+r(M(k ) + -Y)i]

Successive iterations of this inequality give

u n 1  +n(5.13) l xn  xn Ilk __ v +nn- u-i+u

We want IIx-x II to be of the order of 5. Therefore, we can choose
'n 'nlk to e o

(5.14) 77 = V u- N/6 I - = Vu-¢ .U, .,

where N = [T/6] and v1 and v2 are constants that can be chosen independently of

6.5

Denoting by K(k)V/6 the right hand side of (5.13) when 1i and 7 are replaced

by (5.14) we write

(5.15) IIxn - x Ik  K(k) -6

The approximation of f(n.-) and g(n.-) by step functions on [-a.a] depends, of

course, on the magnitude of a. Therefore we need to determine a lower bound

for it. Equation (5.11), can be written for the ith component as follows:

55' W'N' '. S.'4 -10''; .. " . / ' ." " - ,;< " .- ,.-uS. ..4,w* ;_v .. %% %-
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= X + £C-. l + '.l l + - L )
r r - -

+ (n- ,

JJ=i+ = [f I nn-l. X 1 - I (n-l.1)J 6 +~ f 1 (n-lXn1)  +

From this we deduce,

R R- + T16 + K -(+IX1)6 + rarrA + rKoa(1+Ix 11) -A5

n n-i O n-i O n-i

Let us put a = sup I0€()l. Then we can write

an an_l + T)6 + KO(1 + Vq a )6 + raI/6 + rKoa(1+4q a n)'65

an K an- (1+Ko /qV(ra + N/6)) + V (Ti + Ko)(ra + N/6)

By iterating successively we get the following inequality for a n

nn

IK0 '4q

where N = [T/6].

We see that once 6 is given. n and i can be chosen according to (5.14).

The choice of - imposes that of a, and finally a can be chosen to be equal to

the right hand side of (5.16).

Suppose that we approximate Xn6 = Xn by Xn6 = X as above and we define xt

by

(5.17) xt = Xn for n6 t < (n+l)6.
-'p.

We obviously have llx - x K(k)/6. (cf. (5.15)). By replacing x by x in

the third approximation we get new unnormalized and normalized filters that we

denote by a and v . This approximation procedure is the fourth we are

considering here.

The quantization scheme presented above depends largely on k. As in the

2
next section. we only consider L -approximations of x. it is then more

convenient to construct x and the corresponding filters for k = 2. ,.-
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6. EFFECT OF THE APPROXIMATIONS OF THE SIGNAL PROCESS AND OF THE QUANTIZATION N
OF THE OBSERVATION PROCESS

Since we only need L2-norms for the evaluation of a bound of liZ t- t1O01 .-

all the constants Kl(k). K 2(k). K(k). K(k) etc. of the preceding section will

simply be written without the argument k as K1, K 2 ,KK etc. Similarly. I11112

will be denoted by 11-11. The same symbol is also used for IIFII as the

sup-norm of F. We shall avoid any possible ambiguity by clarifying the meaning

when we shall deal with the sup-norm.

We go back to Formula (4.10) where the superscript 0 represents the

modified objects of the first approximation, obtained after x is replaced by x

or x. constructed in Section 5. with k=2.

We need to evaluate a bound for (4.20) and we first deal with

iCs - 8tslI. We have, for (n-l)6 < s n6 K t.
1 6 0

(6.1) 11C s - t's11 = 11h(S.X s) -~ n 1) 6 n~ h(uX (n-l)5)dull

fi6 12 duII
(6.1) 1) 6~~~ 5  - 1 /~x

Elh(sx) - 2(n-1))

Ko (6(l + lixs11 + li (n+ )ll) + lxs - x(n_)l11 +

+ llx(n-1)-x(n-1)6ll + ell(n-l)6 (n- l) II

where a = 0 if x = x and e = 1 if x = x.

As .11,II n - according to (5.15). we can write
'n61 1n1+ 1n6 - Xn

(6.2) 1 Ixn611 K K

Therefore (6.1) becomes

1IC- Kt s K0 1{6(l+2K + ei'6) + (K K + EK)6},

where K is given by (5.9).

Consequently.

(6.3) ic tt f + Kol [K('1+6) + ])V

where A1 is given by (4.25).

Similarly, we have ,.

V.

I%...,
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(6.4) flC. - ,sii - I{bS~n-1)b[h(UXu) - h(u'X(ul),5l]duI

K0 sup fix u - X(n_1)611 Ko(K 2 + K + eK) '6
u b

where (n-1)6 < u n6 t. Therefore

(6.5) t - t tt  NX K21o + K + EK) 6

We also have

(6.6) Ic It + |Vtl < v["[Ko(1+K!,) + KO(1+K 1 + eK-/6)] ,

= 2'r KO(l+K 1 ) + e-r Ko KI6

and

(6.7) vTKI+K1 + e.K 6)

By bringing (6.3 ---- 7) and (4.25) into (4.20) we get

1

(6.8) lzt - till -

< A1 + {A1 + 'K0 A [eK(I+6) + K]) (1 + + e'Kov'[&K(1+6) + K]) +

+AK/rK o (
1+Kl) + Av

+ e'r KO(K 2 + K + fK)V6 [l+vrO(l+Kl+eK'b)]'

6A1 (e.e')=:A,

where ' = 1. .

For the evaluation of a bound of (4.10) we need to compute a bound for

IIF(xt) - F(t )II1. We then suppose that F is uniformly Lipschitz continuous

i.e..

(6.9) IF(x) - F(x')l 9 Klx-x'I. Vx.x' e mq

with a constant K.

We therefore have

(6.10) JII(x )-F(xt)ll1, 9 KIx-,ll X 9 'K(K2+K^+K),/6= .), .

where e' = 1.

Finally we have the following extension of Theorem 4.3.

5%."
% .,

r %. 
9 '?? -S_ % % '

w''v , " ,. . .,,,e e.e. '. " :,e. , , :.,,,..',e";. ." .", ' ' .,'.'",".',; ,' ,.", ," ,." t":' " ",. ' "' L:
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THEOREM 6.1

2%
Under hypotheses (2.4). (4.21). (6.9) and x e L we have

(6.11) I -(F) - ( [2<l2 1 +

where iIFII is the sup-norm of F. A and A2 are given by (6.8) and (6.10),

respectively.

For e'--O, the right hand side of the inequality gives a bound of

llr(F)-rS(F)11, (but in this case the Lipschitz continuity of F is not

needed), for e'=Z and e-0 it gives a bound for {i r(F)-- 6 11 and for e=l and

e=1 a bound for I 1r(F)-ir 6 I1" 0

^S

We recall that the quantization of x was made under the supplementary

hypothesis that the distribution function of x0 is continuous.

If the values taken by (y n) were exactly known, then the approximate %

filter v could be computed with a desired accuracy by a finite number of

operations. But the observation is usually measured In terms of units of a

finite set; more precisely. m.easurement devices offer only quantized values of

6
the observation. The problem s to characterize a quantization of (y ) andn

therefore of (y..) which would nat affect the degree of approximation of 7r.

Let us put

It'1 . 6 6 -.. 2(6.12) Z- exp (H ny Jn I)
n=')

where Hn is given by
n

(6.13) Hn = 1 en- h(s'x ))ds
n 6 (n-)6 (n-l6

and x is the quantized approximation of x for k=2.

Z is the likelihood ratio correspon-'ing to the fourth approximation

procedure. We shall replace y6 by a finite space valued random variable

approximating it. More precisely, we choose the real step function

S'.P.-r'6



25

J-1
(6.14) C(x) = c l]v vj+ l](x ) ,  V <vl<...<vj

-6 --16

with finite J and define Yn = (Y .... y 6P) byn n n

(6.15) Y. c(y.

6 -
in such a way that if y n is replaced by yn in (6.12) the corresponding filter

should be close to r.

We put -

3

(6.16) Il 6 Y- 110"4 = P6
2  and c = sup cj

t / ] - - 6 1 )
(6.17) Zt = exp I (H n y- I Hn

n=O
56 -6

and define a= and ir byt

-6 -6 -6 -6
(6.18) a t(F) = EQ[ZtF(xt)] and =t(F) =t(F)/St(1).

for all F e P(IRq).

=_ 6
We remark that Z t is not the likelihood ratio corresponding to y but rt

is still a probability distribution on the finite space of values of x.

In order to simplify the problem we first suppose that h is bounded.

Formulas (4.7) and (4.8) are still valid with o and vr replaced by a and

=6 .jir , and we can write
6 t = = Fx

(6.19) IjI(F) - i i(F)l , 211FIl JlZt-ZtjjO, 1 + IlZt[F(xt) - F(x )]1o, 1 .

Putting

= -
li0z - ilIzt-zI10I + 1zt - zt1l

zt = z - z +z Z
t t t t

and bringing into (6.19) we can write

-6 zz' +(6.20) I(Fr)- i (F)II 211FII lzt-z IIF(xt)-F(xt)ll

+ 211FII 1Z - zt 110, + ll(Zt-Z t) [F(x t) - F(xt))IlO"

Notice that the first two terms of the right hand side dominate

%0
ofa
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I irt(F)-Vr(F)Iji and its bound is given in Theorem 6.1. Therefore, we only

need to compute a reasonable bound for the sum of the third and fourth terms.
I

According to (6.10). this sum is bounded by

(6.21) I1Zt-Z t1o.2(21IF1l + Klixt-xtll2)

IIZt - Zt 110.2 [21IF1I + K(K2+K+K),/"

Therefore we need to make IZt-Zt11 0.2 small.

By putting I lhll = sup th(t.x)l we can write
t'x

1 Izt-zt 1' I I~n--o nY n  n)'0 4 I0. Zt+ZtIIO4

Tjjhjj / (llzt0,4 +IztIIO. 4 )

We have

, 1h2 ) =: K3 and

=4 [t/6S] - 5cThl
Z4=e n=[ (H-6 6 )] exp 4=Tjjhj

Zt e 4In= n n

Therefore

(6.22) I1Zt-Z o 2 r Ih I p8 [K3 + exp 6

The quantization can be carried out in such a way that

(6.23) p = D[K3 + exp c6j hll -1

where D is a constant. We then obtain a bound for IIr(F) - (F)--l'

proportional to 4/. t

Therefore we can state the following

THEOREM 6.2

Under the hypotheses of Theorem 6.1 and for bounded h, variables Yn;
-6

n=1,2..... [T/6]. can be approximated by finite space valued yn, as defined by

(6.15), in such a way that (6.23) is satisfied. In this case if yn is replaced

by yn in the expression of Vi yielding a new filter Y=. then

% %.

N Z
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(6.24) I w(F)-f (F)II1  211FII[A (1,1) + A2(l 1))v16+

+ TDI h II[21IF + K(K2+K + K) 3,v6i6

where the first term of the right hand side is the bound of IIw(F) - w(F)lI1

given by (6.11) for e=e=I and D is a conveniently chosen constant for the

fulfillment of (6.23). 3

The procedure leading to 16 is the fifth and the last of the approximation

procedures considered here.

REMARK 6.3

In the case where h is bounded, the second inequality of (4.21) is not

necessary and corresponding modifications of A1 and can be easily made. But
1 d 2 cnb asl ae u

it is always possible to get rid of the boundedness condition of h in the last

theorem. In fact T can be approximated by a truncation of h in such a way

that if r is the filter of the fourth approximation corresponding to the

truncated h say htr , then II;(F) - w tr(F)II, is bounded by a quantity

proportional to v'S. In this case the fifth approximate filter can be

constructed with htr and give again for IIjr(F) - i(F)II1 a bound proportional

too
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